Identification

Title

The identification of a planar magnetic structure within the ICME shock sheath and its influence on galactic cosmic-ray flux

Abstract

A Forbush decrease is a sudden decrease in cosmic-ray intensity caused by transient interplanetary disturbances. The substructure of an interplanetary counterpart of a coronal mass ejection (ICME) such as a shock sheath and/or a magnetic cloud independently contributes to cosmic-ray decrease, which is evident as a two-step decrease. Our earlier work has shown multistep decrease and recovery within the ICME-driven shock-sheath region. Further, we have suggested that the presence of a small-scale flux rope within the shock-sheath region causes a steady/gradual recovery in cosmic-ray intensity. Here, we demonstrate the presence of a planar magnetic structure (PMS) and small-scale flux rope within a single shock sheath of an ICME. The plot of the elevation (θ) versus azimuthal (phgr) angle of the interplanetary magnetic field (IMF) is used for the identification of the PMS. The planarity, efficiency, and a plane-normal vector are estimated by employing a minimum variance analysis (MVA) technique, which confirmed the presence of the PMS. In addition, a 2D-hodogram method in conjunction with the MVA technique is utilized to identify the flux-rope structure and turbulent conditions in the corresponding ICME region. The observation in the visible suggests that the PMS region within the ICME shock sheath caused the decrease in the cosmic-ray flux observed at Earth. It has also been observed that the sharp variations in the IMF (i.e., turbulence) cause a decrease, whereas the flux-rope structure is responsible for the recovery of the CR flux. Further studies are needed to investigate their origins and to confirm their effects on space weather.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7zw1md0

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-10-18T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:08:08.086281

Metadata language

eng; USA