Identification

Title

Effects of forcing uncertainties on the thermospheric and ionospheric states during geomagnetic storm and quiet periods

Abstract

Upper-atmospheric weather prediction is subject to various types of forcing uncertainties. Understanding the sensitivity of the thermosphere and ionosphere to forcing uncertainties under different geomagnetic conditions is critical for space weather predictions. Ensemble simulations of a whole atmospheric model, the National Center for Atmospheric Research Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (WACCM-X), with various kinds of forcing perturbation is used to evaluate the upper atmosphere's response to the uncertainties of different forcings. Two kinds of forcing uncertainties are addressed: the lower atmospheric wave and tide forcing uncertainties and high-latitude electric potential uncertainty. These uncertainties are estimated in different ways and applied to generate forcing perturbations in the WACCM-X. WACCM-X can simulate the upper atmosphere's response to the uncertainties of the lower atmospheric wave and tide forcings related to different lower atmospheric conditions. High-latitude electric potential uncertainty is estimated based on the SuperMag and SuperDARN data through the Assimilative Mapping of Geospace Observations, which is applied to generate the forcing perturbation of high-latitude electric potential in the WACCM-X. The results show that the impact of high-latitude electric potential uncertainty is significant globally during the 2013 St. Patrick's Day storm. The lower atmospheric wave and tide forcing uncertainties result in a global impact on the upper atmosphere in the model. The sensitivity of the upper atmosphere to both uncertainties is approximately the combination of the two individually, though the combined effects are not a linear sum, indicating non-linearities in the ionosphere and thermosphere response to forcing uncertainties.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7p84gvm

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:53:12.586036

Metadata language

eng; USA