Identification

Title

Impacts of vertically propagating tides on the mean state of the ionosphere-thermosphere system

Abstract

The National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) is utilized to understand the role that upward propagating tides play in determining the zonal mean state of the ionosphere-thermosphere system. A sensitivity assessment of the TIE-GCM shows that TIE-GCM solutions greatly depend on the lower boundary conditions. We also establish the veracity of our TIE-GCM solutions within and above the dynamo region. To isolate the mean effects of tidal dissipation, differences between TIE-GCM simulations with and without lower boundary tidal forcing as specified by the Climatological Tidal Model of the Thermosphere are investigated. Dissipation of the DW1, (diurnal westward propagating tide with zonal wave number 1), diurnal eastward propagating tide with zonal wave number 3, and SW2 (semidiurnal tide with zonal wave number 2) explains most of ∼10–30 m s−1 seasonal and latitudinal variability in zonal winds within the dynamo region, with SW2 playing a greater role than ascribed in previous studies. Tidal dissipation at low latitudes causes a 9% decrease (30% increase) in [O] ([O2]) number densities near the F2 layer peak, leading to at least a 9% decrease in peak electron density (NmF2) throughout the year. F2 layer peak height (hmF2) differences of -4 to 2 km at low latitudes are explained by variations in the field-aligned plasma motion driven by meridional wind differences induced by tidal dissipation. Compositional effects are mainly driven by DW1 and SW2, which differs from previous interpretations of tidal-driven composition changes by DW1 "tidal mixing" exclusively. We suggest that tides may produce a net transport of constituents in the thermosphere similar to the way that, e.g., gravity waves can drive net transport of sodium in the mesosphere.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d74x58rr

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2014-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2014 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-12T00:10:28.422987

Metadata language

eng; USA