Identification

Title

Predictability of the mesosphere and lower thermosphere during major sudden stratospheric warmings

Abstract

The predictability of the middle atmosphere during major sudden stratospheric warmings (SSWs) is investigated based on subseasonal hindcasts in the Community Earth System Model, version 2 with the Whole Atmosphere Community Climate Model as its atmospheric component (CESM2[WACCM6]). The CESM2(WACCM6) hindcasts allow for the first comprehensive investigation into the predictability of the mesosphere and lower thermosphere (MLT) during SSWs. Analysis of 14 major SSWs demonstrates that CESM2(WACCM6) hindcasts initialized similar to 5-15 days prior to the SSW onset are able to predict the timing of the SSW, though they underestimate the strength of the SSW. Aspects of the MLT variability, such as the mesosphere cooling and enhanced semidiurnal tide, are found to be well predicted. The demonstrated ability to predict MLT variability during SSWs indicates the potential for improved multi-day space weather forecasting. Improved space weather forecasting may be achieved by using whole atmosphere models that can predict the MLT variability that drives ionosphere-thermosphere variability during SSWs.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7sn0dd5

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T16:13:21.724551

Metadata language

eng; USA