Identification

Title

Improvements in nonconvective aviation turbulence prediction for the World Area Forecast System

Abstract

For the next generation of the World Area Forecast System (WAFS), the global Graphical Turbulence Guidance (G-GTG) has been developed using global numerical weather prediction (NWP) model outputs as an input to compute a set of turbulence diagnostics, identifying strong spatial gradients of meteorological variables associated with clear-air turbulence (CAT) and mountain-wave turbulence (MWT). The G-GTG provides an atmospheric turbulence intensity metric of energy dissipation rate (EDR) to the 1/3 power (m2/3 s–1), which is the International Civil Aviation Organization (ICAO) standard for aircraft reporting. Deterministic CAT and MWT EDR forecasts are derived from ensembles of calibrated multiple CAT and MWT diagnostics, respectively, with the final forecast provided by the gridpoint-by-gridpoint maximum of the CAT and MWT ensemble means. In addition, a probabilistic EDR forecast is produced by the percentage agreement of the individual CAT and MWT diagnostics that exceed a certain EDR threshold for turbulence (i.e., multidiagnostic ensemble). Objective evaluations of the G-GTG against global in situ EDR measurement data show that both deterministic and probabilistic G-GTG significantly improve the current WAFS CAT product, mainly because the G-GTG takes into account turbulence from various sources related to CAT and MWT. The probabilistic G-GTG forecast is more reliable at predicting light-or-greater (EDR > 0.15)- than moderate-or-greater (EDR > 0.22)-level turbulence, although it suffers from overforecasting. This will be improved in the future when we use this methodology with NWP ensembles and more observation data will be available for calibration. We expect that the new G-GTG forecasts will be beneficial to aviation users globally.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d70k2ckx

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:19:14.179461

Metadata language

eng; USA