Identification

Title

Identifying canopy snow in subalpine forests: A comparative study of methods

Abstract

The interception of snow by the canopy is an important process in the water and energy balance in cold‐region coniferous forests. Direct measurements of canopy snow interception are difficult at scales larger than individual trees, requiring indirect methods such as eddy covariance, time‐lapse photography, or modeling. At the Niwot Ridge Subalpine Forest AmeriFlux site in the Colorado Front Range, USA, we compared methods that estimate or simulate the presence of snow interception. Timelapse photography images were analyzed using thresholding analysis and used to train a Convolutional Neural Network (CNN) model to estimate canopy snow presence. Interception was also estimated from eddy covariance measurements above and below the canopy, as well as from model simulations. These methods were applied over January 2019, with binarized results compared to a “ground truth” of human labeled images to calculate the Balanced Accuracy Score. The highest accuracy was achieved by the CNN predictions. Based on the Balanced Accuracy Scores, select methods were extended to estimate the presence of canopy snow for the 2018/2019 winter. All methods provided insight into the process of interception in a subalpine forest but presented challenges, including differing flux footprints of the above‐ and below‐canopy eddy covariance measurements and the inability of red‐green‐blue imagery to monitor snow interception at night, during sunrise, and during sunset.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7z89hr2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:55:25.700107

Metadata language

eng; USA