Identification

Title

Stronger decadal variability of the Kuroshio Extension under simulated future climate change

Abstract

Understanding the behavior of western boundary current systems is crucial for predictions of biogeochemical cycles, fisheries, and basin-scale climate modes over the midlatitude oceans. Studies indicate that anthropogenic climate change induces structural changes in the Kuroshio Extension (KE) system, including a northward migration of its oceanic jet. However, changes in the KE temporal variability remain unclear. Using large ensembles of a global coupled climate model, we show that in response to increasing greenhouse gases, the time scale of KE sea surface height (SSH) shifts from interannual scales toward decadal and longer scales. We attribute this increased low-frequency KE variability to enhanced mid-latitude oceanic Rossby wave activity induced by regional and remote atmospheric forcing, due to a poleward shift of midlatitude surface westerly with climatology and an increase in the tropical precipitation activity, which lead to stronger atmospheric teleconnections from El Nino to the midlatitude Pacific and the KE region. Greenhouse warming leads to both a positive (elongated) KE state that restricts ocean perturbations (e.g., eddy activity) and stronger wind-driven KE fluctuations, which enhances the contributions of decadal KE modulations relative to short-time scale intrinsic oceanic KE variations. Our spectral analyses suggest that anthropogenic forcing may alter the future predictability of the KE system.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7mc93sg

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-08-02T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T16:01:04.498989

Metadata language

eng; USA