Identification

Title

Efficient graphics processing unit modeling of street‐scale weather effects in support of aerial operations in the urban environment

Abstract

Over the last few years, the concept of incorporating aerial vehicles into the urban environment for diverse purposes has attracted ample interest and investment. These purposes cover a broad spectrum of applications, from larger vehicles designed for passenger transport, to package delivery and inspection/surveillance missions performed by small unmanned drones. While these Advanced Air Mobility (AAM) operations have the potential to alleviate bottlenecks arising from saturated surface transportation networks, there are a number of challenges that need to be addressed to make these operations safe and viable. One challenge is predicting weather effects within the urban environment with the required level of spatiotemporal fidelity, which current operational weather models fail to provide due to the use of coarse grid spacings (a few kilometers) constrained by the predictive performance limitations of traditional computer architectures. Herein, we demonstrate how FastEddy®, a microscale model that exploits the accelerated nature of graphics processing units for high-performance computing, can be used to understand and predict urban weather impacts from seasonal, day-to-day, diurnal, and sub-hourly scales. To that end, we efficiently perform more than 50 telescoped simulations of microscale urban effects at street-scale (5 m grid spacing) driven by realistic weather over a 20 km2 region centered at the downtown area of Dallas, Texas. Our analyses demonstrate that urban-weather interactions at the street-scale are complex and tightly connected, which is of utmost relevance to AAM operations. These demonstrations reveal the capability of such models to provide real-time weather hazard avoidance products tailored to capture microscale urban effects.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7c250m6

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:29:27.506060

Metadata language

eng; USA