Identification

Title

First characterization and validation of FORLI-HNO₃ vertical profiles retrieved from IASI/Metop

Abstract

Knowing the spatial and seasonal distributions of nitric acid (HNO3) around the globe is of great interest and allows us to comprehend the processes regulating stratospheric ozone, especially in the polar regions. Due to its unprecedented spatial and temporal sampling, the nadir-viewing Infrared Atmospheric Sounding Interferometer (IASI) is capable of sounding the atmosphere twice a day globally, with good spectral resolution and low noise. With the Fast Optimal Retrievals on Layers for IASI (FORLI) algorithm, we are retrieving, in near real time, columns as well as vertical profiles of several atmospheric species, among which is HNO3. We present in this paper the first characterization of the FORLI-HNO3 profile products, in terms of vertical sensitivity and error budgets. We show that the sensitivity of IASI to HNO3 is highest in the lower stratosphere (10–20 km), where the largest amounts of HNO3 are found, but that the vertical sensitivity of IASI only allows one level of information on the profile (degrees of freedom for signal, DOFS;  ∼  1). The sensitivity near the surface is negligible in most cases, and for this reason, a partial column (5–35 km) is used for the analyses. Both vertical profiles and partial columns are compared to FTIR ground-based measurements from the Network for the Detection of Atmospheric Composition Change (NDACC) to characterize the accuracy and precision of the FORLI-HNO3 product. The profile validation is conducted through the smoothing of the raw FTIR profiles by the IASI averaging kernels and gives good results, with a slight overestimation of IASI measurements in the upper troposphere/lower stratosphere (UTLS) at the six chosen stations (Thule, Kiruna, Jungfraujoch, Izaña, Lauder and Arrival Heights). The validation of the partial columns (5–35 km) is also conclusive with a mean correlation of 0.93 between IASI and the FTIR measurements. An initial survey of the HNO3 spatial and seasonal variabilities obtained from IASI measurements for a 1-year (2011) data set shows that the expected latitudinal gradient of concentrations from low to high latitudes and the large seasonal variability in polar regions (cycle amplitude around 30 % of the seasonal signal, peak to peak) are well represented by IASI data.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7gm890f

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-09-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 License

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:01:01.839541

Metadata language

eng; USA