Identification

Title

Evaluations of WRF sensitivities in surface simulations with an ensemble prediction system

Abstract

This paper investigates the sensitivities of the Weather Research and Forecasting (WRF) model simulations to different parameterization schemes (atmospheric boundary layer, microphysics, cumulus, longwave and shortwave radiations and other model configuration parameters) on a domain centered over the inter-mountain western United States (U.S.). Sensitivities are evaluated through a multi-model, multi-physics and multi-perturbation operational ensemble system based on the real-time four-dimensional data assimilation (RTFDDA) forecasting scheme, which was developed at the National Center for Atmospheric Research (NCAR) in the United States. The modeling system has three nested domains with horizontal grid intervals of 30 km, 10 km and 3.3 km. Each member of the ensemble system is treated as one of 48 sensitivity experiments. Validation with station observations is done with simulations on a 3.3-km domain from a cold period (January) and a warm period (July). Analyses and forecasts were run every 6 h during one week in each period. Performance metrics, calculated station-by-station and as a grid-wide average, are the bias, root mean square error (RMSE), mean absolute error (MAE), normalized standard deviation and the correlation between the observation and model. Across all members, the 2-m temperature has domain-average biases of -1.5-0.8 K; the 2-m specific humidity has biases from -0.5--0.05 g/kg; and the 10-m wind speed and wind direction have biases from 0.2-1.18 m/s and -0.5-4 degrees, respectively. Surface temperature is most sensitive to the microphysics and atmospheric boundary layer schemes, which can also produce significant differences in surface wind speed and direction. All examined variables are sensitive to data assimilation.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7h134s7

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-03-13T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 Author(s). This work is licensed under a Creative Commons Attribution 4.0 license.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:15:08.626601

Metadata language

eng; USA