Identification

Title

Convective transport of formaldehyde to the upper troposphere and lower stratosphere and associated scavenging in thunderstorms over the central United States during the 2012 DC3 study

Abstract

We have developed semi-independent methods for determining CH2O scavenging efficiencies (SEs) during strong midlatitude convection over the western, south-central Great Plains, and southeastern regions of the United States during the 2012 Deep Convective Clouds and Chemistry (DC3) Study. The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) was employed to simulate one DC3 case to provide an independent approach of estimating SEs and the opportunity to study CH2O retention in ice when liquid drops freeze. Measurements of CH2O in storm inflow and outflow were acquired on board the NASA DC-8 and the NSF/National Center for Atmospheric Research Gulfstream V (GV) aircraft employing cross-calibrated infrared absorption spectrometers. This study also relied heavily on the nonreactive tracers i-/n-butane and i-/n-pentane measured on both aircraft in determining lateral entrainment rates during convection as well as their ratios to ensure that inflow and outflow air masses did not have different origins. Of the five storm cases studied, the various tracer measurements showed that the inflow and outflow from four storms were coherently related. The combined average of the various approaches from these storms yield remarkably consistent CH2O scavenging efficiency percentages of: 54% ± 3% for 29 May; 54% ± 6% for 6 June; 58% ± 13% for 11 June; and 41 ± 4% for 22 June. The WRF-Chem SE result of 53% for 29 May was achieved only when assuming complete CH2O degassing from ice. Further analysis indicated that proper selection of corresponding inflow and outflow time segments is more important than the particular mixing model employed.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7ff3v04

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-06-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:02:38.982226

Metadata language

eng; USA