Atmospheric CO₂ monitoring with single-cell NDIR-based analyzers
We describe CO₂ concentration measurement systems based on relatively inexpensive single-cell non-dispersive infrared CO₂ sensors. The systems utilize signal averaging to obtain precision (1-σ in 100 s) of 0.1 parts per million dry air mole fraction (ppm), frequent calibrations and sample drying in order to achieve state-of-the-art compatibility, and can run autonomously for months at a time. Laboratory tests indicate compatibility among four to six systems to be ±0.1 ppm (1-σ), and field measurements of known reference-gases yield median errors of 0.01 to 0.17 ppm with 1-σ variance of ±0.1 to 0.2 ppm. From May to August 2007, a system co-located with a NOAA-ESRL dual-cell NDIR system at the WLEF tall tower in Wisconsin measured daytime-only daily averages of CO₂ that differ by 0.26 ± 0.15 ppm (median ± 1 σ), and from August 2005 to April 2011 a system co-located with weekly NOAA-ESRL network flask collection at Niwot Ridge, Colorado measured coincident CO₂ concentrations that differed by -0.06 ± 0.30 ppm (n = 585). Data from these systems are now supporting a wide range of analyses and this approach may be applicable in future studies where accuracy and initial cost of the sensors are priorities.
document
http://n2t.net/ark:/85065/d72n532b
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2011-12-14T00:00:00Z
Copyright Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:50:40.464363