Identification

Title

Can fully accounting for clouds in data assimilation improve short-term forecasts by global models?

Abstract

This paper explores the degree to which short-term forecasts with global models might be improved if clouds were fully included in a data assimilation system, so that observations of clouds affected all parts of the model state and cloud variables were adjusted during assimilation. The question is examined using a single ensemble data assimilation system coupled to two present-generation climate models with different treatments of clouds. "Perfect-model" experiments using synthetic observations, taken from a free run of the model used in subsequent assimilations, are used to circumvent complications associated with systematic model errors and observational challenges; these provide a rough upper bound on the utility of cloud observations with these models. A series of experiments is performed in which direct observations of the model’s cloud variables are added to the suite of observations being assimilated. In both models, observations of clouds reduce the 6-h forecast error, with much greater reductions in one model than in the other. Improvements are largest in regions where other observations are sparse. The two cloud schemes differ in their complexity and number of degrees of freedom; the model using the simpler scheme makes better use of the cloud observations because of the stronger correlations between cloud-related and dynamical variables (particularly temperature). This implies that the impact of real cloud observations will depend on both the strength of the instantaneous, linear relationships between clouds and other fields in the natural world, and how well each assimilating model’s cloud scheme represents those relationships.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d72n52p0

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2011-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

http://journals.ametsoc.org/doi/abs/10.1175/2010MWR3412.1

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:47:30.014792

Metadata language

eng; USA