Identification

Title

Canopy structure modulates the sensitivity of subalpine forest stands to interannual snowpack and precipitation variability

Abstract

A declining spring snowpack is expected to have widespread effects on montane and subalpine forests in western North America and across the globe. The way that tree water demands respond to this change will have important impacts on forest health and downstream water subsidies. Here, we present data from a network of sap velocity sensors and xylem water isotope measurements from three common tree species (Picea engelmannii, Abies lasiocarpa and Populus tremuloides) across a hillslope transect in a subalpine watershed in the Upper Colorado River basin. We use these data to compare tree- and stand-level responses to the historically high spring snowpack but low summer rainfall of 2019 against the low spring snowpack but high summer rainfall amounts of 2021 and 2022. From the sap velocity data, we found that only 40 % of the trees showed an increase in cumulative transpiration in response to the large snowpack year (2019), illustrating the absence of a common response to interannual spring snowpack variability. The trees that increased water use during the year with the large spring snowpack were all found in dense canopy stands – irrespective of species – while trees in open-canopy stands were more reliant on summer rains and, thus, more active during the years with modest snow and higher summer rain amounts. Using the sap velocity data along with supporting measurements of soil moisture and snow depth, we propose three mechanisms that lead to stand density modulating the tree-level response to changing seasonality of precipitation: Topographically mediated convergence zones have consistent access to recharge from snowmelt which supports denser stands with high water demands that are more reliant and sensitive to changing snow. Interception of summer rain in dense stands reduces the throughfall of summer rain to surface soils, limiting the sensitivity of the dense stands to changes in summer rain. Shading in dense stands allows the snowpack to persist deeper into the growing season, providing high local reliance on snow during the fore-summer (early-summer) drought period. Combining data generated from natural gradients in stand density, like this experiment, with results from controlled forest-thinning experiments can be used to develop a better understanding of the responses of forested ecosystems to futures with reduced spring snowpack.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d74172dk

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-02-05T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:54:34.732179

Metadata language

eng; USA