Identification

Title

Eclipse-induced changes to topside ion composition and field-aligned ion flows in the August 2017 solar eclipse: e-POP observations

Abstract

We present in situ ion composition and velocity measurements during the August 2017 solar eclipse from the Enhanced Polar Outflow Probe (e-POP), which crossed the path of totality at similar to 640-km altitude within 10 min of totality passing. These measurements reveal two distinct H+ ion populations, an similar to 40% decrease in topside plasma density, a similar drop in upward but not downward H+ ion flux, and a downward O+ ion velocity of similar to 100 m/s. These features are directly linked to changes in the H+/O+ composition and in interhemispheric or field-aligned light ion flow and to a reduction in the negative spacecraft potential. These observed features were absent on the preceding, noneclipse days and corroborate the reduction in F region plasma density and topside total electron content observed by the Global Positioning System receivers on board. They are attributed to the temporary reduction of photoionization in the eclipsed F region.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7kk9fsc

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-10-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:20:01.132627

Metadata language

eng; USA