Identification

Title

Testing IWC retrieval methods using radar and ancillary measurements with in-situ data

Abstract

Vertical profiles of ice water content (IWC) can now be derived globally from spaceborne cloud satellite radar (CloudSat) data. Integrating these data with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data may further increase accuracy. Evaluations of the accuracy of IWC retrieved from radar alone and together with other measurements are now essential. A forward model employing aircraft Lagrangian spiral descents through mid- and low-latitude ice clouds is used to estimate profiles of what a lidar and conventional and Doppler radar would sense. Radar reflectivity Ze and Doppler fall speed at multiple wavelengths and extinction in visible wavelengths were derived from particle size distributions and shape data, constrained by IWC that were measured directly in most instances. These data were provided to eight teams that together cover 10 retrieval methods. Almost 3400 vertically distributed points from 19 clouds were used. Approximate cloud optical depths ranged from below 1 to more than 50. The teams returned retrieval IWC profiles that were evaluated in seven different ways to identify the amount and sources of errors. The mean (median) ratio of the retrieved-to-measured IWC was 1.15 (1.03) ± 0.66 for all teams, 1.08 (1.00) ± 0.60 for those employing a lidar-radar approach, and 1.27 (1.12) ± 0.78 for the standard CloudSat radar-visible optical depth algorithm for Ze > -28 dBZe. The ratios for the groups employing the lidar-radar approach and the radar-visible optical depth algorithm may be lower by as much as 25% because of uncertainties in the extinction in small ice particles provided to the groups. Retrievals from future spaceborne radar using reflectivity-Doppler fall speeds show considerable promise. A lidar-radar approach, as applied to measurements from CALIPSO and CloudSat, is useful only in a narrow range of ice water paths (IWP) (40 < IWP < 100 g m⁻²). Because of the use of the Rayleigh approximation at high reflectivities in some of the algorithms and differences in the way nonspherical particles and Mie effects are considered, IWC retrievals in regions of radar reflectivity at 94 GHz exceeding about 5 dBZe are subject to uncertainties of ±50%.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7j103b5

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2008 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T16:00:06.167361

Metadata language

eng; USA