Identification

Title

Estimating the uncertainty of using GPS radio occultation data for climate monitoring: Intercomparison of CHAMP refractivity climate records from 2002 to 2006 from different data centers

Abstract

To examine the suitability of GPS radio occultation (RO) observations as a climate benchmark data set, this study aims at quantifying the structural uncertainty in GPS RO-derived vertical profiles of refractivity and measured refractivity trends obtained from atmospheric excess phase processing and inversion procedures. Five years (2002 - 2006) of monthly mean climatologies (MMC) of retrieved refractivity from the experiment aboard the German satellite CHAMP generated by four RO operational centers were compared. Results show that the absolute values of fractional refractivity anomalies among the centers are, in general, ≤0.2% from 8 to 25 km altitude. The median absolute deviations among the centers are less than 0.2% globally. Because the differences in fractional refractivity produced by the four centers are, in general, unchanging with time, the uncertainty of the trend for fractional refractivity anomalies among centers is ¹0.04% per 5 years globally. The primary cause of the trend uncertainty is due to different quality control methods used by the four centers, which yield different sampling errors for different centers. We used the National Centers for Environmental Prediction reanalysis in the same period to estimate sampling errors. After removing the sampling errors, the uncertainty of the trend for fractional refractivity anomalies among centers is between -0.03 and 0.01% per 5 years. Thus 0.03% per 5 years can be considered an upper bound in the processing scheme-induced uncertainty for global refractivity trend monitoring. Systematic errors common to all centers are not discussed in this article but are generally believed to be small.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7wd41vg

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2009-12-09T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2009 by the American Geophysical Union

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:58:40.600734

Metadata language

eng; USA