Identification

Title

Pushing the Limit: A Hybrid Parallel Implementation of the Multi-resolution Approximation for Massive Data

Abstract

The multi-resolution approximation (MRA) of Gaussian processes was recently proposed to conduct likelihood-based inference for massive spatial data sets. An advantage of the methodology is that it can be parallelized. We implemented the MRA in C++ for both serial and parallel versions. In the parallel implementation, we use a hybrid parallelism that employs both distributed and shared memory computing for communications between and within nodes by using the Message Passing Interface (MPI) and OpenMP, respectively. The performance of the serial code is compared between the C++ and MATLAB implementations over a small data set on a personal laptop. The C++ parallel program is further carefully studied under different configurations by applications to data sets from around a tenth of a million to 47 million observations. We show the practicality of this implementation by demonstrating that we can get quick inference for massive real-world data sets. The serial and parallel C++ code can be found at https://github.com/hhuang90.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7vq35r6

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-04-30T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright Author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:29:31.643618

Metadata language

eng; USA