Identification

Title

Ensemble spread behavior in coupled climate models: Insights from the Energy Exascale Earth System Model version 1 large ensemble

Abstract

Assessing uncertainty in future climate projections requires understanding both internal climate variability and external forcing. For this reason, single-model initial condition large ensembles (SMILEs) run with Earth System Models (ESMs) have recently become popular. Here we present a new 20-member SMILE with the Energy Exascale Earth System Model version 1 (E3SMv1-LE), which uses a "macro" initialization strategy choosing coupled atmosphere/ocean states based on inter-basin contrasts in ocean heat content (OHC). The E3SMv1-LE simulates tropical climate variability well, albeit with a muted warming trend over the twentieth century due to overly strong aerosol forcing. The E3SMv1-LE's initial climate spread is comparable to other (larger) SMILEs, suggesting that maximizing inter-basin ocean heat contrasts may be an efficient method of generating ensemble spread. We also compare different ensemble spread across multiple SMILEs, using surface air temperature and OHC. The Community Earth system Model version 1, the only ensemble which utilizes a "micro" initialization approach perturbing only atmospheric initial conditions, yields lower spread in the first SIM;30 years. The E3SMv1-LE exhibits a relatively large spread, with some evidence for anthropogenic forcing influencing spread in the late twentieth century. However, systematic effects of differing "macro" initialization strategies are difficult to detect, possibly resulting from differing model physics or responses to external forcing. Notably, the method of standardizing results affects ensemble spread: control simulations for most models have either large background trends or multi-centennial variability in OHC. This spurious disequlibrium behavior is a substantial roadblock to understanding both internal climate variability and its response to forcing.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d73f4tpz

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:16:43.436495

Metadata language

eng; USA