Identification

Title

A new 1D/2D coupled modeling approach for a riverine‐estuarine system under storm events: Application to Delaware river basin

Abstract

Numerical simulations of three of the most severe historical tropical cyclones to affect the Delaware River Basin (DRB) are used to evaluate a new numerical approach that is a candidate model for the inland-coastal compound flood forecast. This study includes simulating interactions of tides/surges, freshwater streamflows, winds, and atmospheric pressure for the DRB. One-way coupling between the hydrologic (National Water Model [NWM]) and the ocean/wave (ADvanced CIRCulation model/WAVEWATCH III [ADCIRC/WW3]) models for the Delaware river-estuarine system is developed. The links between the coastal processes and the NWM are provided by two different hydraulic and hydrodynamic models: (i) a well-calibrated public-domain 1D hydraulic solver model (Hydrologic Engineering Center's River Analysis System [HEC-RAS]) and (ii) 1D/2D open-sourced hydrodynamic model (D-Flow Flexible Mesh [D-Flow FM]). First, the modeling system is tested to confirm model verification and stability when the system is forced with only tidal forcing. Then, the relative performance of each modeling approach (NWM/D-Flow FM/ADCIRC/WW3 and NWM/HEC-RAS/ADCIRC/WW3) is evaluated using observational data from Hurricanes Isabel (2003), Irene (2011), and Sandy (2012). Furthermore, the sensitivity of water level prediction to the streamflows, different wind products, and bed roughness are examined. Results show that the D-Flow FM is generally accurate for water levels: the water levels near the peak of the storms have askillranging from 0.79 to 0.91 with a negligible phase error. Simulations show that water level predictions depend on an accurate representation of the wind conditions and bottom roughness. The work shows that hydrodynamic predictions, especially upstream, are highly dependent on the streamflow discharges.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d72z18sd

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-09-25T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:31:34.879727

Metadata language

eng; USA