Identification

Title

Tracking tropospheric radio occultation signals from low Earth orbit

Abstract

Propagation of radio occultation signals through the tropical lower troposphere with severe refractivity gradients results in significant spreading of the signal spectrum. Under such conditions a signal acquisition technique which tracks large random troposphere-induced phase accelerations more reliably than a generic phase-locked loop has to be applied. This paper discusses the results of simulations of open loop tracking of radio occultation signals that were generated with data from high-resolution tropical radiosondes. The signal has to be down-converted in real time in the receiver on orbit to a low mean residual frequency by use of a phase (Doppler) model based on predicted orbits and refractivity climatology. The down-converted complex signal is then low-pass filtered and sampled. The phase in excess of the phase model must be reconstructed from the sampled and down-linked signal in postprocessing. This may require an additional down-conversion to eliminate (minimize) aliasing of harmonics in the spectrum. Then the accumulated phase can be reconstructed by resampling the signal at a higher rate to resolve the cycle ambiguities. A fast algorithm for prediction of the Doppler based on the refractivity climatology and an algorithm for the detection of Doppler mismodeling based on sliding window spectral analysis of the down-converted signal are developed and tested. The accuracy of the Doppler modeling, Âą(15-20) Hz, the required filter bandwidth, 100 Hz, and the sampling rate, 50-100 Hz, are estimated.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7c53n42

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2001-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2001 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:04:38.470943

Metadata language

eng; USA