Identification

Title

The contribution of snow condition trends to future ground climate

Abstract

Global climate models predict that terrestrial northern high-latitude snow conditions will change substantially over the twenty-first century. Results from a Community Climate System Model simulation of twentieth and twenty-first (SRES A1B scenario) century climate show increased winter snowfall (+10-40%), altered maximum snow depth (-5 ± 6 cm), and a shortened snow-season (-14 ± 7 days in spring, +20 ± 9 days in autumn). By conducting a series of prescribed snow experiments with the Community Land Model, we isolate how trends in snowfall, snow depth, and snow-season length affect soil temperature trends. Increasing snowfall, by countering the snowpack-shallowing influence of warmer winters and shorter snow seasons, is effectively a soil warming agent, accounting for 10-30% of total soil warming at 1 m depth and ~16% of the simulated twenty-first century decline in near-surface permafrost extent. A shortening snow season enhances soil warming due to increased solar absorption whereas a shallowing snowpack mitigates soil warming due to weaker winter insulation from cold atmospheric air. Snowpack deepening has comparatively less impact due to saturation of snow insulative capacity at deeper snow depths. Snow depth and snow-season length trends tend to be positively related, but their effects on soil temperature are opposing. Consequently, on the century timescale the net change in snow state can either amplify or mitigate soil warming. Snow state changes explain less than 25% of total soil temperature change by 2100. However, for the latter half of twentieth century, snow state variations account for as much as 50-100% of total soil temperature variations.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7862gzs

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2010-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by Springer. Copyright 2010 Springer.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T15:25:44.748926

Metadata language

eng; USA