Identification

Title

Impact of semidiurnal tidal variability during SSWs on the mean state of the ionosphere and thermosphere

Abstract

Observations from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites reveal a global reduction in the zonal and diurnal mean F region peak electron density (NmF2) during sudden stratosphere warmings (SSWs). The present study investigates the source of the global NmF2 decrease by performing numerical experiments with the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-electrodynamics general circulation model. The simulations reveal that the NmF2 reduction coincides with a depletion of thermospheric [O]/[N2], indicating that the NmF2 depletion is related to changes in thermospheric composition during SSWs. Numerical experiments further illustrate that the short-term (∼10 day) enhancement of the migrating semidiurnal solar tide (SW2) during SSWs is the source of the variability in thermospheric composition. In particular, the enhancement of the SW2 during SSWs alters the lower thermosphere zonal mean circulation, leading to a reduction in atomic oxygen in the lower thermosphere. The atomic oxygen reduction propagates into the upper thermosphere through molecular diffusion, leading to a decrease in [O]/[N2] throughout the low- to middle-latitude thermosphere. It is anticipated that the effects of the SW2 on the ionosphere and thermosphere investigated herein will be modulated by SSW related enhancements of the migrating semidiurnal lunar tide (M2). The magnitude of the combined impact of the SW2 and M2 on the ionosphere-thermosphere mean state will depend on the relative phasing of the solar and lunar tides. The results demonstrate that in addition to modulating the low-latitude electrodynamics, tidal variability during SSWs can significantly impact the mean state of the ionosphere and thermosphere.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d72j6djp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:00:29.255742

Metadata language

eng; USA