Identification

Title

Relationship of convection initiation and subsequent storm strength to ensemble simulated environmental conditions during IOP3b of VORTEX Southeast 2017

Abstract

A 50-member convection-allowing ensemble was used to examine environmental factors influencing afternoon convection initiation (CI) and subsequent severe weather on 5 April 2017 during intensive observing period (TOP) 3b of the Verification of the Origins of Rotation in Tornadoes Experiment in the Southeast (VORTEX-SE). This case produced several weak tornadoes (rated EF1 or less), and numerous reports of significant hail (diameter >= 2 in.; >= similar to 5 cm), ahead of an eastward-moving surface cold front over eastern Alabama and southern Tennessee. Both observed and simulated CI was facilitated by mesoscale lower-tropospheric ascent maximized several tens of kilometers ahead of the cold-frontal position, and the simulated mesoscale ascent was linked to surface frontogenesis in the ensemble mean. Simulated maximum 2-5 km AGL updraft helicity (UHmax) was used as a proxy for severe-weather-producing mesocy-clones, and considerable variability in UHmax occurred among the ensemble members. Ensemble members with UHmax > 100 m(2) s(-2) had stronger mesoscale ascent than in members with UHmax < 75 m(2) s(-2), which facilitated timelier CI by producing greater adiabatic cooling and moisture increases above the PBL. After CI, storms in the larger UHmax members moved northeastward toward a mesoscale region with larger convective available potential energy (CAPE) than in smaller UHmax members. The CAPE differences among members were influenced by differences in the location of an antecedent mesoscale convective system, which had a thermodynamically stabilizing influence on the environment toward which storms were moving. Despite providing good overall guidance, the model ensemble overpredicted severe weather likelihoods in northeastern Alabama, where comparisons with VORTEX-SE soundings revealed a positive CAPE bias.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d70868vp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T16:10:53.759659

Metadata language

eng; USA