Identification

Title

Impact of combined assimilation of radar and rainfall data on short-term heavy rainfall prediction: A case study

Abstract

Radar and surface rainfall observations are two sources of operational data crucial for heavy rainfall prediction. Their individual values on improving convective forecasting through data assimilation have been examined in the past using convection-permitting numerical models. However, the benefit of their simultaneous assimilations has not yet been evaluated. The objective of this study is to demonstrate that, using a 4D-Var data assimilation system with a microphysical scheme, these two data sources can be assimilated simultaneously and the combined assimilation of radar data and estimated rainfall data from radar reflectivity and surface network can lead to improved short-term heavy rainfall prediction. In our study, a combined data assimilation experiment is compared with a rainfall-only and a radar-only (with or without reflectivity) experiments for a heavy rainfall event occurring in Taiwan during the passage of a mei-yu system. These experiments are conducted by applying the Weather Research and Forecasting (WRF) 4D-Var data assimilation system with a 20-min time window aiming to improve 6-h convective heavy rainfall prediction. Our results indicate that the rainfall data assimilation contributes significantly to the analyses of humidity and temperature whereas the radar data assimilation plays a crucial role in wind analysis, and further, combining the two data sources results in reasonable analyses of all three fields by eliminating large, unphysical analysis increments from the experiments of assimilating individual data only. The results also show that the combined assimilation improves forecasts of heavy rainfall location and intensity of 6-h accumulated rainfall for the case studied.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7833w7p

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:31:49.432616

Metadata language

eng; USA