Identification

Title

Antarctic data impact experiments with Polar WRF during the YOPP-SH summer special observing period

Abstract

Data impact experiments are conducted employing the Polar Weather Research and Forecasting (WRF) model during the YOPP-SH summer special observing period (SOP) using the Antarctic Mesoscale Prediction System (AMPS) framework to determine the forecast impact of numerous additional radiosondes collected during the SOP. Hybrid variational-ensemble three-dimensional data assimilation is performed on model forecast domains over Antarctica and the Southern Ocean using all regular observations normally available (Experiment "NoSOP") and using the same set plus the extra soundings launched for the SOP (Experiment "SOP"). The SOP results show better near-surface temperature and wind-speed forecasts than the NoSOP results, primarily over West Antarctica. Radiosonde profiles confirm that temperature and wind-speed forecasts are improved throughout the troposphere with the addition of the SOP radiosonde data, but the results for relative humidity are variable. Temperatures are improved at lower levels early in the forecasts, whereas wind speeds are better at higher levels later in the forecasts. An evaluation against the ERA5 global reanalysis that provides a much broader perspective reveals that the improved forecast skill for the SOP experiment persists up to 72 hours for temperature, wind speed, and relative humidity. The gains, however, are primarily confined to the Antarctic continent, consistent with the additional radiosonde spatial coverage being mainly poleward of 60 degrees S. With extra radiosondes concentrated over the Antarctic Peninsula, SOP forecasts of the region downstream of the Peninsula were significantly improved compared to NoSOP forecasts. In addition, it is found that the assimilation of the additional radiosonde data can have a greater impact on the forecasts of strong cyclones, as shown for a major coastal cyclone affecting West Antarctica, with improvements in its magnitude and track. The results also suggest that increasing radiosonde launches at lower southern latitudes would improve forecasts over the Southern Ocean, especially during austral winter.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d75b0686

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-07-02T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T16:01:45.633229

Metadata language

eng; USA