Identification

Title

Nonequilibrium fractionation during ice cloud formation in iCAM5: Evaluating the common parameterization of supersaturation as a linear function of temperature

Abstract

Supersaturation with respect to ice determines the strength of nonequilibrium fractionation during vapor deposition onto ice or snow and therefore influences the water isotopic composition of vapor and precipitation in cold environments. Historically, most general circulation models formed clouds through saturation adjustment and therefore prevented supersaturation. To match the observed isotopic content, especially the deuterium excess, of snow in polar regions, the saturation ratio with respect to ice (Si) was parameterized, usually by assuming a linear dependence of Si on temperature. The Community Atmosphere Model Version 5 (CAM5) no longer applies saturation adjustment for the ice phase and thus allows ice supersaturation. Here, we adapt the isotope-enabled version of CAM5 to compute nonequilibrium fractionation in ice and mixed-phase clouds based on Si from the CAM5 microphysics and use it to evaluate the common parameterization of Si. Our results show a wide range of Si predicted by the CAM5 microphysics and reflected in the simulated deuterium excess of Antarctic precipitation; this is overly simplified by the linear parameterization. Nevertheless, a linear function, when properly tuned, can reproduce the average observed relationship between delta D and deuterium excess reasonably well. However, only the model-predicted Si can capture changes in microphysical conditions under different climate states that are not due to changes in temperature. Furthermore, parametric sensitivity tests show that with the model-predicted Si, water isotopes are more closely tied to the model microphysics and can therefore constrain uncertain microphysical parameters.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d77084pz

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-11-24T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:11:26.802587

Metadata language

eng; USA