Identification

Title

Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review

Abstract

This paper evaluates the use of field data on the spatial variability of snow water equivalent (SWE) to guide the design of distributed snow models. An extensive reanalysis of results from previous field studies in different snow environments around the world is presented, followed by an analysis of field data on spatial variability of snow collected in the headwaters of the Jollie River basin, a rugged mountain catchment in the Southern Alps of New Zealand. In addition, area-averaged simulations of SWE based on different types of spatial discretization are evaluated. Spatial variability of SWE is shaped by a range of different processes that occur across a hierarchy of spatial scales. Spatial variability at the watershed-scale is shaped by variability in near-surface meteorological fields (e.g., elevation gradients in temperature) and, provided suitable meteorological data is available, can be explicitly resolved by spatial interpolation/extrapolation. On the other hand, spatial variability of SWE at the hillslope-scale is governed by processes such as drifting, sloughing of snow off steep slopes, trapping of snow by shrubs, and the nonuniform unloading of snow by the forest canopy, which are more difficult to resolve explicitly. Subgrid probability distributions are often capable of representing the aggregate-impact of unresolved processes at the hillslope-scale, though they may not adequately capture the effects of elevation gradients. While the best modeling strategy is case-specific, the analysis in this paper provides guidance on both the suitability of several common snow modeling approaches and on the choice of parameter values in subgrid probability distributions.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d71837sj

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2011-07-21T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2011 American Geophysical Union

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:59:01.123989

Metadata language

eng; USA