Identification

Title

Using synthetic tracers as a proxy for summertime PM2.5 air quality over the Northeastern United States in physical climate models

Abstract

Fine particulate matter (PM2.5) is a criteria pollutant. Its sensitivity to meteorology implies its distribution will likely change with climate shifts. Limited availability of global climate models with full chemistry complicates efforts to assess rigorously the uncertainties in the PM2.5 response to a warming climate. We evaluate the potential for PM2.5 distributions in a chemistry-climate model under current-day and warmer climate conditions over the Northeastern United States to be represented by a Synthetic Aerosol tracer (SAt). The SAt implemented into the Geophysical Fluid Dynamics Laboratory chemistry-climate model (AM3) follows the protocol of a recent multimodel community effort (HTAP), with CO emissions, 25-day chemical lifetime, and wet deposition rate of sulfate. Over the Northeastern United States, the summer daily time series of SAt correlates strongly with that of PM2.5, with similar cumulative density functions under both present and future climate conditions. With a linear regression model derived from PM2.5 and SAt in the current-day simulation, we reconstruct both the current-day and future PM2.5 daily time series from the simulated SAt. This reconstruction captures the summer mean PM2.5, the incidence of days above the 24-h mean PM2.5 NAAQS, and PM2.5 responses to climate change. This reconstruction also works over other polluted Northern Hemispheric regions and in spring. Our proof-of-concept study demonstrates that simple tracers can be developed to mimic PM2.5, including its response to climate change, as an easy-to-implement and low-cost addition to physical climate models that should help air quality managers to reap the benefits of climate models that have no chemistry.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d74m95c0

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-02-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2013 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:45:56.763332

Metadata language

eng; USA