Identification

Title

Electrification in mesoscale updrafts of deep stratiform and anvil clouds in Florida

Abstract

Airborne observations in deep stratiform and anvil clouds showed extensive layers of 10- to 40-kV/m electric fields colocated with highly stratified uniform radar reflectivity of 20 to 25dBZ from 5- to 9-km altitude. Size distributions with numerous small- and intermediate-sized ice crystals (mostly aggregates) and large aggregates were observed in these regions. We infer that the uniform electric field, radar reflectivity, and broad particle size distributions were the result of mesoscale updrafts, confirmed by high-resolution images of particles showing diffusional growth and no riming. No measurable supercooled liquid water was found in these regions from -10 to -45 degrees C. Calculated particle collision rates from observed distributions were >5x10(3) collisions per cubic meter per second in this volume. Laboratory results show that weak charge separation occurs when ice particles collide and separate even in the absence of supercooled water. We infer that charge separation occurred in the mesoscale updrafts via a noninductive mechanism in which ice particles growing by diffusion collide and transfer charge without supercooled water being present. These regions with strong, uniform fields, stratified radar reflectivity, and broad size distributions also occurred in anvils that barely reached the melting zone. Thus, we deduce that the nonriming collisional mechanism acts at middle to upper cloud levels and is not dependent upon electrification occurring near the melting zone. This mechanism should produce two oppositely charged layers of charge with the top layer residing on smaller particles often existing near the top of the cloud.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7h70jtk

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-01-21T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:24:31.525504

Metadata language

eng; USA