The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum
Reduced cloudiness and enhanced downwelling radiation are associated with the unprecedented 2007 Arctic sea ice loss. Over the Western Arctic Ocean, total summertime cloud cover estimated from spaceborne radar and lidar data decreased by 16% from 2006 to 2007. The clearer skies led to downwelling shortwave (longwave) radiative fluxes increases of +32 Wm⁻² (−4 Wm⁻²) from 2006 to 2007. Over three months, simple calculations show that these radiation differences alone could enhance surface ice melt by 0.3 m, or warm the surface ocean by 2.4 K, which enhances basal ice melt. Increased air temperatures and decreased relative humidity associated with an anti-cyclonic atmospheric circulation pattern explain the reduced cloudiness. Longer-term observations show that the 2007 cloudiness is anomalous in the recent past, but is not unprecedented. Thus, in a warmer world with thinner ice, natural summertime circulation and cloud variability is an increasingly important control on sea ice extent minima.
document
http://n2t.net/ark:/85065/d72r3rvs
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2008-01-01T00:00:00Z
An edited version of this paper was published by AGU. Copyright 2008 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:38:44.184528