Estimates of past and future ozone trends from multimodel simulations using a flexible smoothing spline methodology
A novel additive model analysis of multimodel trends is presented. The approach is motivated by, and particularly suited to, the analysis of multimodel time series of varying length. This Time series Additive Model (TSAM) approach consists of three distinct steps: estimation of individual model trends, baseline adjustment of the trends, and the weighted combination of the individual model trends to produce a multimodel trend (MMT) estimate. The baseline adjustment step is not an essential ingredient of the TSAM but is included to reduce model spread. The association of the TSAM approach with a probabilistic model allows trend estimates to be used to make formal inference (e.g., calculation of confidence and prediction intervals). The method is applied to the analysis of multimodel ozone time series of varying lengths as were considered for the 2006 Scientific Assessment of Ozone Depletion. The advantages of the TSAM approach are demonstrated to include the production of smooth trend estimates out to the ends of the time series, the ability to model explicitly interannual variability about the trend estimate, and the ability to make rigorous probability statements. Calculated ozone return dates are consistent with previous qualitative estimates, but the more quantitative analysis provided by the MMT is expected to allow such data sets to be better utilized by the community and policy makers.
document
http://n2t.net/ark:/85065/d74m954v
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2010-11-24T00:00:00Z
Copyright 2010 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:08:08.272971