Identification

Title

Evaluating uncertainty in convective cloud microphysics using statistical emulation

Abstract

The microphysical properties of convective clouds determine their radiative effects on climate, the amount and intensity of precipitation as well as dynamical features. Realistic simulation of these cloud properties presents a major challenge. In particular, because models are complex and slow to run, we have little understanding of how the considerable uncertainties in parameterized processes feed through to uncertainty in the cloud responses. Here we use statistical emulation to enable a Monte Carlo sampling of a convective cloud model to quantify the sensitivity of 12 cloud properties to aerosol concentrations and nine model parameters representing the main microphysical processes. We examine the response of liquid and ice-phase hydrometeor concentrations, precipitation, and cloud dynamics for a deep convective cloud in a continental environment. Across all cloud responses, the concentration of the Aitken and accumulation aerosol modes and the collection efficiency of droplets by graupel particles have the most influence on the uncertainty. However, except at very high aerosol concentrations, uncertainties in precipitation intensity and amount are affected more by interactions between drops and graupel than by large variations in aerosol. The uncertainties in ice crystal mass and number are controlled primarily by the shape of the crystals, ice nucleation rates, and aerosol concentrations. Overall, although aerosol particle concentrations are an important factor in deep convective clouds, uncertainties in several processes significantly affect the reliability of complex microphysical models. The results suggest that our understanding of aerosol-cloud interaction could be greatly advanced by extending the emulator approach to models of cloud systems.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d790250r

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2015-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2015 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:25:59.387213

Metadata language

eng; USA