Identification

Title

General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices

Abstract

Polarization measurements have become nearly indispensible in lidar cloud and aerosol studies. Despite polarization's widespread use in lidar, its theoretical description has been widely varying in accuracy and completeness. Incomplete polarization lidar descriptions invariably result in poor accountability for scatterer properties and instrument effects, reducing data accuracy and disallowing the intercomparison of polarization lidar data between different systems. We introduce here the Stokes vector lidar equation, which is a full description of polarization in lidar from laser output to detector. We then interpret this theoretical description in the context of forward polar decomposition of Mueller matrices where distinct polarization attributes of diattenuation, retardance, and depolarization are elucidated. This decomposition can be applied to scattering matrices, where volumes consisting of randomly oriented particles are strictly depolarizing, while oriented ice crystals can be diattenuating, retarding, and depolarizing. For instrument effects we provide a description of how different polarization attributes will impact lidar measurements. This includes coupling effects due to retarding and depolarization attributes of the receiver, which have no description in scalar representations of polarization lidar. We also describe how the effects of polarizance in the receiver can result in nonorthogonal polarization detection channels. This violates one of the most common assumptions in polarization lidar operation.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7pn969t

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2012-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2012 Optical Society of America.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-15T21:36:11.811933

Metadata language

eng; USA