Identification

Title

Eigenvector-spatial localisation

Abstract

We present a new multiscale covariance localisation method for ensemble data assimilation that is based on the estimation of eigenvectors and subsequent projections, together with traditional spatial localisation applied with a range of localisation lengths. In short, we estimate the leading, large-scale eigenvectors from the sample covariance matrix obtained by spatially smoothing the ensemble (treating small scales as noise) and then localise the resulting sample covariances with a large length scale. After removing the projection of each ensemble member onto the leading eigenvectors, the process may be repeated using less smoothing and tighter localizations or, in a final step, using the resulting, residual ensemble and tight localisation to represent covariances in the remaining subspace. We illustrate the use of the new multiscale localisation method in simple numerical examples and in cycling data assimilation experiments with the Lorenz Model III. We also compare the proposed new method to existing multiscale localisation and to single-scale localisation.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7q81hft

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:30:13.791266

Metadata language

eng; USA