Identification

Title

High-resolution historical climate simulations over Alaska

Abstract

Weather and climate variability strongly influence the people, infrastructure, and economy of Alaska. However, the sparse observational network in Alaska limits our understanding of meteorological variability, particularly of precipitation processes that influence the hydrologic cycle. Here, a new 14-yr (September 2002-August 2016) dataset for Alaska with 4-km grid spacing is described and evaluated. The dataset, generated with the Weather Research and Forecasting (WRF) Model, is useful for gaining insight into meteorological and hydrologic processes, and provides a baseline against which to measure future environmental change. The WRF fields are evaluated at annual, seasonal, and daily time scales against observation-based gridded and station records of 2-m air temperature, precipitation, and snowfall. Pattern correlations between annual mean WRF and observation-based gridded fields are r = 0.89 for 2-m temperature, r = 0.75 for precipitation, r = 0.82 for snow-day fraction, r = 0.55 for first snow day of the season, and r = 0.71 for last snow day of the season. A shortcoming of the WRF dataset is that spring snowmelt occurs too early over a majority of the state, due partly to positive 2-m temperature biases in winter and spring. Strengths include an improved representation of the interannual variability of 2-m temperature and precipitation and accurately simulated (relative to regional station observations) winter and summer precipitation maxima. This initial evaluation suggests that the 4-km WRF climate dataset robustly simulates meteorological processes and recent climatic variability in Alaska. The dataset may be particularly useful for applications that require high-temporal-frequency weather fields, such as driving hydrologic or glacier models. Future studies will provide further insight on its ability to represent other aspects of Alaska's climate.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7j105vq

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:40:47.809368

Metadata language

eng; USA