Identification

Title

A multi-model assessment of RKW Theory's relevance to squall line characteristics

Abstract

The authors evaluate whether the structure and intensity of simulated squall lines can be explained by "RKW theory," which most specifically addresses how density currents evolve in sheared environments. In contrast to earlier studies, this study compares output from four numerical models, rather than from just one. All of the authors’ simulations support the qualitative application of RKW theory, whereby squall-line structure is primarily governed by two effects: the intensity of the squall line’s surface-based cold pool, and the low- to midlevel environmental vertical wind shear. The simulations using newly developed models generally support the theory’s quantitative application, whereby an optimal state for system structure also optimizes system intensity. However, there are significant systematic differences between the newer numerical models and the older model that was originally used to develop RKW theory. Two systematic differences are analyzed in detail, and causes for these differences are proposed.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7gf0trr

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2006-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2006 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:39:01.944107

Metadata language

eng; USA