Identification

Title

On the ionospheric application of Poynting's theorem

Abstract

It has been proposed that the geomagnetic field-aligned component of the perturbation Poynting vector above the ionosphere, as obtained from the cross product of the electric and magnetic perturbation fields observed on a spacecraft, may be used to estimate the field line-integrated electromagnetic energy dissipation in the ionosphere below. This paper clarifies conditions under which this approximation may be either valid or invalid. It is shown that the downward field-aligned component of the perturbation Poynting vector can underestimate the electromagnetic energy dissipation in regions of high ionospheric Pedersen conductance, and it can significantly overestimate the dissipation in regions of low conductance. Local values of upward perturbation Poynting vector do not necessarily correspond to net ionospheric generation of electromagnetic energy along that geomagnetic field line. An Equipotential Boundary Poynting Flux (EBPF) theorem is presented for quasi-static electromagnetic fields as follows: when a volume of the ionosphere is bounded on the sides by an equipotential surface and on the bottom by the base of the conducting ionosphere, then the area integral of the downward normal component of the perturbation Poynting vector over the top of that volume equals the energy dissipation within the volume. This equality does not apply to volumes with arbitrary side boundaries. However, the EBPF theorem can be applied separately to different components of the electric potential, such as the large- and small-scale components. Since contours of the small-scale component of potential tend to close over relatively localized regions, the associated small-scale structures of downward perturbation Poynting vector tend to be dissipated locally.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d72r3s6p

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2010-10-14T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2010 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:51:41.026618

Metadata language

eng; USA