Identification

Title

Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications

Abstract

Water-vapor-weighted atmospheric mean temperature, Tm, is a key parameter in the retrieval of atmospheric precipitable water (PW) from ground-based Global Positioning System (GPS) measurements of zenith path delay (ZPD), as the accuracy of the GPS-derived PW is proportional to the accuracy of Tm. We compare and analyze global estimates of Tm from three different data sets from 1997 to 2002: the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA-40), the National Centers for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) reanalysis, and the newly released Integrated Global Radiosonde Archive (IGRA) data set. Temperature and humidity profiles from both the ERA-40 and NCEP/NCAR reanalyses produce reasonable Tm estimates compared with those from the IGRA soundings. The ERA-40, however, is a better option for global Tm estimation because of its better performance and its higher spatial resolution. Tm is found to increase from below 255 K in polar regions to 295-300 K in the tropics, with small longitudinal variations. Tm has an annual range of similar to 2-4 K in the tropics and 20-35 K over much of Eurasia and northern North America. The day-to-day Tm variations are 1-3 K over most low latitudes and 4-7 K (2-4 K) in winter (summer) Northern Hemispheric land areas. Diurnal variations of Tm are generally small, with mean-to-peak amplitudes less than 0.5 K over most oceans and 0.5-1.5 K over most land areas and a local time of maximum around 16-20 LST. The commonly used Tm-Ts relationship from Bevis et al. (1992) is evaluated using the ERA-40 data. Tm derived from this relationship (referred to as Tmb) has a cold bias in the tropics and subtropics (-1 similar to -6 K, largest in marine stratiform cloud regions) and a warm bias in the middle and high latitudes (2-5 K, largest over mountain regions). The random error in Tmb is much smaller than the bias. A serious problem in Tmb is its erroneous large diurnal cycle owing to diurnally invariant Tm-Ts relationship and large Ts diurnal variations, which could result in a spurious diurnal cycle in GPS-derived PW and cause 1-2% day-night biases in GPS-based PW.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7cz37gh

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2005-11-02T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2005 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:39:34.758404

Metadata language

eng; USA