Identification

Title

Evaluation of a data assimilation system for land surface models using CLM4.5

Abstract

The magnitude and persistence of land carbon (C) pools influence long-term climate feedbacks. Interactive ecological processes influence land C pools and our understanding of these processes is imperfect so land surface models have errors and biases when compared to each other and to real observations. Here we implement an Ensemble Adjustment Kalman Filter (EAKF), a sequential state data assimilation technique to reduce these errors and biases. We implement the EAKF using the Data Assimilation Research Testbed coupled with the Community Land Model (CLM 4.5 in CESM 1.2). We assimilated simulated and real satellite observations for a site in central New Mexico, United States. A series of observing system simulation experiments allowed assessment of the data assimilation system without model error. This showed that assimilating biomass and leaf area index observations decreased model error in C dynamics forecasts (29% using biomass observations and 40% using leaf area index observations) and that assimilation in combination shows greater improvement (51% using both observation streams). Assimilating real observations highlighted likely model structural errors and we implemented an adaptive model-variance-inflation technique to allow the model to track the observations. Monthly and longer model forecasts using real observations were improved relative to forecasts without data assimilation. The reliable forecast lead-time varied by model pool and is dependent on how tightly the C pool is coupled to meteorologically driven processes. The EAKF and similar state data assimilation techniques could reduce errors in projections of the land C sink and provide more robust forecasts of C pools and land-atmosphere exchanges.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7pn98mp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 Author(s). This work is licensed under a Creative Commons Attribution Non-Commercial NoDerivatives Attribution 4.0 International license.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:19:57.031587

Metadata language

eng; USA