A statistical analysis of lossily compressed climate model data
The data storage burden resulting from large climate model simulations continues to grow. While lossy data compression methods can alleviate this burden, they introduce the possibility that key climate variables could be altered to the point of affecting scientific conclusions. Therefore, developing a detailed understanding of how compressed model output differs from the original is important. Here, we evaluate the effects of two leading compression algorithms, SZ and ZFP, on daily surface temperature and precipitation rate data from a widely used climate model. While both algorithms show promising fidelity with the original output, detectable artifacts are introduced even at relatively tight error tolerances. This study highlights the need for evaluation methods that are sensitive to errors at different spatiotemporal scales and specific to the particular climate variable of interest.
document
http://n2t.net/ark:/85065/d71c215n
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2020-12-01T00:00:00Z
Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:32:31.601205