Exploring multiyear-to-decadal North Atlantic sea level predictability and prediction using machine learning
<div class="c-article-section" style="box-sizing:inherit;clear:both;" id="Abs1-section"><div class="c-article-section__content" style="box-sizing:inherit;margin-bottom:40px;padding-top:8px;" id="Abs1-content"><p style="box-sizing:inherit;margin-bottom:24px;margin-top:0px;overflow-wrap:break-word;word-break:break-word;">Coastal communities face substantial risks from long-term sea level rise and decadal sea level variations, with the North Atlantic and U.S. East Coast being particularly vulnerable under changing climates. Employing a self-organizing map-based framework, we assess the North Atlantic sea level variability and predictability using 5000-year sea level anomalies (SLA) from two preindustrial control model simulations. Preferred transitions among patterns of variability are identified, revealing long-term predictability on decadal timescales related to shifts in Atlantic meridional overturning circulation phases. Combining this framework with model-analog techniques, we demonstrate prediction skill of large-scale SLA patterns and low-frequency coastal SLA variations comparable to that from initialized hindcasts. Moreover, additional short-term predictability is identified after the exclusion of low-frequency signals, which arises from slow gyre circulation adjustment triggered by the North Atlantic Oscillation-like stochastic variability. This study highlights the potential of machine learning to assess sources of predictability and to enable long-term climate prediction.</p></div></div></section><section class="c-article-recommendations" style="-webkit-text-stroke-width:0px;background-color:rgb(243, 243, 243);box-sizing:inherit;color:rgb(34, 34, 34);font-family:-apple-system, "system-ui", "Segoe UI", Roboto, Oxygen-Sans, Ubuntu, Cantarell, "Helvetica Neue", sans-serif;font-size:18px;font-style:normal;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;margin:0px 0px 48px;orphans:2;padding:24px;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;white-space:normal;widows:2;word-spacing:0px;" aria-labelledby="inline-recommendations" data-title="Inline Recommendations" data-track-component="inline-recommendations">
document
https://n2t.net/ark:/85065/d7g44vkb
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2024-12-01T00:00:00Z
<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-10T19:56:30.363059