Identification

Title

Exploring multiyear-to-decadal North Atlantic sea level predictability and prediction using machine learning

Abstract

<div class="c-article-section" style="box-sizing:inherit;clear:both;" id="Abs1-section"><div class="c-article-section__content" style="box-sizing:inherit;margin-bottom:40px;padding-top:8px;" id="Abs1-content"><p style="box-sizing:inherit;margin-bottom:24px;margin-top:0px;overflow-wrap:break-word;word-break:break-word;">Coastal communities face substantial risks from long-term sea level rise and decadal sea level variations, with the North Atlantic and U.S. East Coast being particularly vulnerable under changing climates. Employing a self-organizing map-based framework, we assess the North Atlantic sea level variability and predictability using 5000-year sea level anomalies (SLA) from two preindustrial control model simulations. Preferred transitions among patterns of variability are identified, revealing long-term predictability on decadal timescales related to shifts in Atlantic meridional overturning circulation phases. Combining this framework with model-analog techniques, we demonstrate prediction skill of large-scale SLA patterns and low-frequency coastal SLA variations comparable to that from initialized hindcasts. Moreover, additional short-term predictability is identified after the exclusion of low-frequency signals, which arises from slow gyre circulation adjustment triggered by the North Atlantic Oscillation-like stochastic variability. This study highlights the potential of machine learning to assess sources of predictability and to enable long-term climate prediction.</p></div></div></section><section class="c-article-recommendations" style="-webkit-text-stroke-width:0px;background-color:rgb(243, 243, 243);box-sizing:inherit;color:rgb(34, 34, 34);font-family:-apple-system, &quot;system-ui&quot;, &quot;Segoe UI&quot;, Roboto, Oxygen-Sans, Ubuntu, Cantarell, &quot;Helvetica Neue&quot;, sans-serif;font-size:18px;font-style:normal;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;margin:0px 0px 48px;orphans:2;padding:24px;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;white-space:normal;widows:2;word-spacing:0px;" aria-labelledby="inline-recommendations" data-title="Inline Recommendations" data-track-component="inline-recommendations">&nbsp;

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7g44vkb

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:56:30.363059

Metadata language

eng; USA