Identification

Title

An examination of urban heat island characteristics in a global climate model

Abstract

A parameterization for urban surfaces has been incorporated into the Community Land Model as part of the Community Climate System Model. The parameterization allows global simulation of the urban environment, in particular the temperature of cities and thus the urban heat island. Here, the results from climate simulations for the AR4 A2 emissions scenario are presented. Present-day annual mean urban air temperatures are up to 4 °C warmer than surrounding rural areas. Averaged over all urban areas resolved in the model, the heat island is 1.1 °C, which is 46% of the simulated mid-century warming over global land due to greenhouse gases. Heat islands are generally largest at night as evidenced by a larger urban warming in minimum than maximum temperature, resulting in a smaller diurnal temperature range compared to rural areas. Spatial and seasonal variability in the heat island is caused by urban to rural contrasts in energy balance and the different responses of these surfaces to the seasonal cycle of climate. Under simulation constraints of no urban growth and identical urban/rural atmospheric forcing, the urban to rural contrast decreases slightly by the end of the century. This is primarily a different response of rural and urban areas to increased long-wave radiation from a warmer atmosphere. The larger storage capacity of urban areas buffers the increase in long-wave radiation such that urban night-time temperatures warm less than rural. Space heating and air conditioning processes add about 0.01 W m⁻² of heat distributed globally, which results in a small increase in the heat island. The significant differences between urban and rural surfaces demonstrated here imply that climate models need to account for urban surfaces to more realistically evaluate the impact of climate change on people in the environment where they live.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d79g5pcv

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2011-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

This is a preprint of an article published in Oleson, K. W., Bonan, G. B., Feddema, J. and Jackson, T. (2011), An examination of urban heat island characteristics in a global climate model. Int. J. Climatol., 31: 1848–1865. doi: 10.1002/joc.2201

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:12:48.168391

Metadata language

eng; USA