Identification

Title

Assessing California wintertime precipitation responses to various climate drivers

Abstract

Understanding how drivers of climate change affect precipitation remains an important area of research. Although several robust precipitation responses have been identified under continued increases in greenhouse gases (GHGs), considerable uncertainty remains. This is particularly the case at regional scales, including the West Coast of the United States and California. Here, we exploit idealized, single forcing simulations from the Precipitation Driver Response Model Intercomparison Project (PDRMIP) to address how climate drivers impact California wintertime precipitation. Consistent with recent work, GHGs including carbon dioxide and methane, as well as solar forcing, yield a robust increase in California wintertime precipitation. We also find robust California precipitation responses to aerosols but with opposite responses for sulfate versus black carbon aerosol. Sulfate aerosol increases California wintertime precipitation, whereas black carbon reduces it. Moreover, California precipitation is more sensitive to aerosols, particularly regional emissions from Europe and Asia, than to GHGs. These precipitation responses are consistent with shifts in the jet stream and altered moisture fluxes. Although the idealized nature of PDRMIP simulations precludes a formal attribution, our results suggest that aerosols can perturb precipitation and fresh water resources along the West Coast of the United States.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7kp85cb

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-06-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:25:18.172917

Metadata language

eng; USA