Identification

Title

Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor

Abstract

Space-borne formaldehyde (HCHO) column measurements from the Ozone Monitoring Instrument (OMI), with 13 × 24 km² nadir footprint and daily global coverage, provide new constraints on the spatial distribution of biogenic isoprene emission from North America. OMI HCHO columns for June-August 2006 are consistent with measurements from the earlier GOME satellite sensor (1996 - 2001) but OMI is 2 - 14% lower. The spatial distribution of OMI HCHO columns follows that of isoprene emission; anthropogenic hydrocarbon emissions are undetectable except in Houston. We develop updated relationships between HCHO columns and isoprene emission from a chemical transport model (GEOS-Chem), and use these to infer top-down constraints on isoprene emissions from the OMI data. We compare the OMI-derived emissions to a state-of-science bottom-up isoprene emission inventory (MEGAN) driven by two land cover databases, and use the results to optimize the MEGAN emission factors (EFs) for broadleaf trees (the main isoprene source). The OMI-derived isoprene emissions in North America (June - August 2006) with 1° × 1° resolution are spatially consistent with MEGAN (R² = 0.48 - 0.68) but are lower (by 4 - 25% on average). MEGAN overestimates emissions in the Ozarks and the Upper South. A better fit to OMI (R² = 0.73) is obtained in MEGAN by using a uniform isoprene EF from broadleaf trees rather than variable EFs. Thus MEGAN may overestimate emissions in areas where it specifies particularly high EFs. Within-canopy isoprene oxidation may also lead to significant differences between the effective isoprene emission to the atmosphere seen by OMI and the actual isoprene emission determined by MEGAN.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7n58mkv

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-01-26T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2008 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T15:59:56.938751

Metadata language

eng; USA