Application of spatial verification methods to idealized and NWP-gridded precipitation forecasts
Several spatial forecast verification methods have been developed that are suited for high-resolution precipitation forecasts. They can account for the spatial coherence of precipitation and give credit to a forecast that does not necessarily match the observation at any particular grid point. The methods were grouped into four broad categories (neighborhood, scale separation, features based, and field deformation) for the Spatial Forecast Verification Methods Intercomparison Project (ICP). Participants were asked to apply their new methods to a set of artificial geometric and perturbed forecasts with prescribed errors, and a set of real forecasts of convective precipitation on a 4-km grid. This paper describes the intercomparison test cases, summarizes results from the geometric cases, and presents subjective scores and traditional scores from the real cases. All the new methods could detect bias error, and the features-based and field deformation methods were also able to diagnose displacement errors of precipitation features. The best approach for capturing errors in aspect ratio was field deformation. When comparing model forecasts with real cases, the traditional verification scores did not agree with the subjective assessment of the forecasts.
document
http://n2t.net/ark:/85065/d7vd70gz
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2009-12-01T00:00:00Z
Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:56:54.641716