Identification

Title

Application of spatial verification methods to idealized and NWP-gridded precipitation forecasts

Abstract

Several spatial forecast verification methods have been developed that are suited for high-resolution precipitation forecasts. They can account for the spatial coherence of precipitation and give credit to a forecast that does not necessarily match the observation at any particular grid point. The methods were grouped into four broad categories (neighborhood, scale separation, features based, and field deformation) for the Spatial Forecast Verification Methods Intercomparison Project (ICP). Participants were asked to apply their new methods to a set of artificial geometric and perturbed forecasts with prescribed errors, and a set of real forecasts of convective precipitation on a 4-km grid. This paper describes the intercomparison test cases, summarizes results from the geometric cases, and presents subjective scores and traditional scores from the real cases. All the new methods could detect bias error, and the features-based and field deformation methods were also able to diagnose displacement errors of precipitation features. The best approach for capturing errors in aspect ratio was field deformation. When comparing model forecasts with real cases, the traditional verification scores did not agree with the subjective assessment of the forecasts.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7vd70gz

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2009-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:56:54.641716

Metadata language

eng; USA