Identification

Title

A linear theory for periodic convectively forced gravity waves near a coastline

Abstract

This study presents a simple 2D linear analytical model aimed at investigating gravity waves forced by temporally periodic convection near a coastline. This investigation encompasses two distinct convective heating scenarios: deep convective heating and stratiform heating/cooling. Our model explores the intricate behavior of gravity waves in proximity to a time-dependent convective source and examines their propagation characteristics across diverse atmospheric conditions. Close to the convective source, gravity waves demonstrate nearly horizontal propagation with vertically aligned phase lines. The velocity of their propagation primarily depends on the vertical scale of the convective heating. The presence of a tropopause further extends their horizontal reach through partial wave ducting between the surface and the tropopause. However, the horizontal scale of the convective heating also plays a crucial role in determining the horizontal wavelength and, consequently, affecting the horizontal propagation speed of the gravity waves. If the heating horizontal scale is small compared to the horizontal scale of free waves at the forcing frequency, the heating vertical scale determines the vertical wavelength and thus the horizontal wavelength. However, if the heating horizontal scale is large, the horizontal wavelength determined by the heating vertical scale has little energy, so that the horizontal wavelength is mainly determined by the heating horizontal scale. Moreover, longer periods of convective heating and stronger background winds contribute to an increased downstream propagation distance of the gravity waves away from the source. Additionally, inertia- gravity waves generated by diurnal convection can propagate horizontally over greater distances at a higher latitude but become confined fi ned or trapped at latitudes exceeding 30 degrees.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7280cv8

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2024 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:00:37.921184

Metadata language

eng; USA