Identification

Title

Effects of distant organized convection on forecasts of widespread clear-air turbulence

Abstract

Two cases of observed widespread moderate-or-greater (MOG) clear-air turbulence (CAT) in different synoptic patterns are investigated using a nested high-resolution NWP model. Both of these cases occurred in confluent entrance regions of upper-tropospheric-lower-stratospheric (UTLS) jet streaks, where large-scale anticyclonic outflow from distant organized moist convection strengthened the UTLS jet. Both the strength and vertical sharpness of the resulting jet influence the altitudes of MOG turbulence and the details of simulated turbulence onset mechanisms. In a strong and narrow UTLS jet downstream of a weak synoptic ridge, MOG turbulence arises from Kelvin-Helmholtz (KH) waves that overturn in opposite directions on the vertical flanks of the jet. In broader UTLS jets, MOG turbulence arising from KH waves was favored in strong vertical shear layers beneath the wind maximum, but was inhibited above it due to static stability increases near the tropopause. However, vertically propagating internal gravity waves initiated above KH wave breaking beneath the UTLS jet amplify within the lower stratosphere above the jet, constituting another possible source of turbulence. Turbulence onset mechanisms were often apparent in simulations with minimum horizontal grid spacings of Delta x = 1 km. However, amplitudes of the associated grid-resolved vertical motions were unreliable when compared with simulations having minimum horizontal grid spacings of Delta x = 1/3 km. In spite of this, turbulence forecasting systems driven by input from coarser-resolution operational NWP models are demonstrated to provide good diagnoses of this type of convectively influenced CAT when the NWP model accurately forecasts upstream convection. Significance StatementIn this study we document the role of distant convection on observed widespread strong clear-air turbulence near upper-level jet streams in different weather patterns. Results from nested NWP model simulations, together with similar examples from previous case studies, suggest a strong association of widespread turbulence with jet stream enhancements related to outflow from upstream convection. We also demonstrate how model horizontal grid spacings of <1 km are required to adequately resolve common turbulence onset mechanisms (e.g., Kelvin-Helmholtz instability, gravity wave breaking). Nevertheless, examples are provided showing that turbulence forecasting systems driven by lower-resolution operational NWP models can provide potentially valuable guidance on these widespread turbulence events when those models accurately forecast the timing and locations of upstream convection.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7mc93wt

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:40:36.989871

Metadata language

eng; USA