Identification

Title

WCRP and WWRP THORPEX YOTC (Year of Tropical Convection) Project, Single Parameter 3-Hourly Pressure Level Forecast Time Series, Transformed to a Regular 1600 by 800 (N400) Gaussian Grid, Dynamical Parameters Only

Alternative title(s)

d629006

Abstract

<p>The realistic representation of tropical convection in our global atmospheric models is a long-standing grand challenge for numerical weather forecasts and global climate predictions. Our lack of fundamental knowledge and practical capabilities in this area leaves us disadvantaged in modeling and predicting prominent phenomena of the tropical atmosphere such as the ITCZ, ENSO, TBO, monsoons and their active or break periods, the MJO, subtropical stratus decks, near-surface ocean properties, easterly waves, tropical cyclones, bulk budgets of cloud microphysical quantities, and even the diurnal cycle. Furthermore, tropical weather and climate disturbances strongly influence stratospheric-tropospheric exchange as well as the extratropics, with the later mediated via poleward migration of synoptic systems or through initiating Rossby wave trains that can involve a range of processes and time scales.</p> <p>To address the challenge of tropical convection, WCRP and WWRP/THORPEX propose a Year of coordinated observing, modeling and forecasting of organized tropical convection and its influences on predictability as a contribution to the United Nations Year of Planet Earth to complement the International Polar Year (IPY). This effort is intended to exploit the vast amounts of existing and emerging observations, the expanding computational resources and the development of new, high-resolution modeling frameworks, with the objective of advancing the characterization, diagnosis, modeling, parameterization and prediction of multiscale convective and dynamic interactions, including the two-way interaction between tropical and extra-tropical weather or climate. This activity and its ultimate success will be based on the coordination of a wide range of ongoing and planned international programmatic activities (e.g., GEWEX/CEOP/GCSS, AMY, EOS, GOOS), strong collaboration among the operational prediction, research laboratory and academic communities, and the construction of a comprehensive data base consisting of satellite data, in-situ data sets and global, high-resolution forecast and simulation model outputs relevant to tropical convection. The proposed timing, focus year approach and integrated framework of this effort is intended to leverage the most benefit from recent investments in Earth Science infrastructure as well as entrain a new generation of young scientists into tackling the outstanding problems in the field of weather and climate prediction.</p> <p><b>It is recommended that potential users of YOTC peruse the Related RDA Datasets ds629.1-ds629.6 (please see below) which represent transformed versions of the raw ECMWF YOTC archive (ds629.0) by the Data Support Section. The transformed versions are archived on an N400 1600 by 800 regular Gaussian grid, starting from high resolution reduced Gaussian grids and spectral coefficients. In addition, horizontal winds have been added and computed from spectral vorticity and divergence.</b></p>

Resource type

dataset

Resource locator

https://gdex.ucar.edu/datasets/d629006/

protocol: https

name: Dataset Description

description: Related Link

function: information

https://gdex.ucar.edu/datasets/d629006/dataaccess/

protocol: https

name: Data Access

description: Related Link

function: download

Unique resource identifier

code

codeSpace

Dataset language

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

climatologyMeteorologyAtmosphere

Keywords

Keyword set

keyword value

dataset

originating controlled vocabulary

title

Resource Type

reference date

date type

revision

effective date

2021-03-30

Keyword set

keyword value

MODELS > MODELS

originating controlled vocabulary

title

U.S. National Aeronautics and Space Administration Global Change Master Directory

reference date

date type

revision

effective date

2025-10-03

Keyword set

keyword value

EARTH SCIENCE > ATMOSPHERE > ALTITUDE > GEOPOTENTIAL HEIGHT

EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC TEMPERATURE > UPPER AIR TEMPERATURE

EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WATER VAPOR > WATER VAPOR INDICATORS > HUMIDITY

EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WINDS > UPPER LEVEL WINDS

EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WINDS > WIND DYNAMICS > CONVERGENCE

EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WINDS > WIND DYNAMICS > VERTICAL WIND VELOCITY/SPEED

EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WINDS > WIND DYNAMICS > VORTICITY

originating controlled vocabulary

title

U.S. National Aeronautics and Space Administration Global Change Master Directory

reference date

date type

revision

effective date

2025-10-03

Geographic location

West bounding longitude

-180.0

East bounding longitude

180.0

North bounding latitude

89.828

South bounding latitude

-89.828

Temporal reference

Temporal extent

Begin position

2008-05-01T1500+00

End position

2010-05-01T1200+00

Dataset reference date

date type

publication

effective date

2014-09-11

Frequency of update

notPlanned

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Creative Commons Attribution 4.0 International License

Limitations on public access

None

Responsible organisations

Responsible party

organisation name

email address

datahelp@ucar.edu

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

organisation name

NSF NCAR Geoscience Data Exchange

email address

datahelp@ucar.edu

web address

https://gdex.ucar.edu

name: NSF NCAR Geoscience Data Exchange

description: The Geoscience Data Exchange (GDEX), managed by the Computational and Information Systems Laboratory (CISL) at NSF NCAR, contains a large collection of meteorological, atmospheric composition, and oceanographic observations, and operational and reanalysis model outputs, integrated with NSF NCAR High Performance Compute services to support atmospheric and geosciences research.

function: download

responsible party role

pointOfContact

Metadata date

2025-10-09T01:28:11Z

Metadata language

eng; USA