Identification

Title

GARD-LENS: A downscaled large ensemble dataset for understanding future climate and its uncertainties

Abstract

<p><span style="-webkit-text-stroke-width:0px;background-color:rgb(255, 255, 255);color:rgb(34, 34, 34);display:inline !important;float:none;font-family:-apple-system, BlinkMacSystemFont, &quot;Segoe UI&quot;, Roboto, Oxygen-Sans, Ubuntu, Cantarell, &quot;Helvetica Neue&quot;, sans-serif;font-size:18px;font-style:normal;font-variant-caps:normal;font-variant-ligatures:normal;font-weight:400;letter-spacing:normal;orphans:2;text-align:start;text-decoration-color:initial;text-decoration-style:initial;text-decoration-thickness:initial;text-indent:0px;text-transform:none;white-space:normal;widows:2;word-spacing:0px;">This article introduces the Generalized Analog Regression Downscaling method Large Ensemble (GARD-LENS) dataset, comprised of daily precipitation, mean temperature, and temperature range over the Contiguous U.S., Alaska, and Hawaii at 12-km, 4-km, and 1-km resolutions, respectively. GARD-LENS statistically downscales three CMIP6 global climate model large ensembles, CESM2, CanESM5, and EC-Earth3, totaling 200 ensemble members. GARD-LENS is the first downscaled SMILE (single model initial-condition large ensemble), providing information about the role of internal climate variability at high resolutions. The 150-year record of this large ensemble dataset provides ample data for assessing trends and extremes and allows users to robustly assess internal variability, forced climate signals, and time of emergence at high resolutions. As the need for high resolution, robust climate datasets continues to grow, GARD-LENS will be a valuable tool for scientists and practitioners who wish to account for internal variability in their future climate analyses and adaptation plans.</span></p>

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d7wh2v9h

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<style type="text/css"></style><span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:57:03.061617

Metadata language

eng; USA